跳到主要內容區

生醫材料應用

包括奈米金微粒於生物晶片相關檢測技術之應用與新檢測技術之研發,微粒、微結構等新材料之製備、表面修飾與傳輸釋放機制之研發。

 

Bio IC

生物體的生命現象是透過蛋白質來呈現的,各種不同的蛋白質則輾轉來自於去氧核醣核酸(DNA)及遺傳物質訊息核醣核酸(RNA)的表達。這裡面包含了生物體的所有遺傳基因,所以要了解生物的奧祕,當然得從儲存基因的DNA或RNA下手才行。(圖:第一代生物晶片。)  

DNA是一種線狀的巨大分子,由四種不同的核苷酸排列而成,並且是以二條線狀分子靠鹼基對將特定的一組核草酸相互結合,而形成一個雙股螺旋狀結構。如果我們有一小段DNA,事先將這段DNA上的分子加以放射處理或做螢光標誌來當作探針,一旦它上面的鹼基序列與待測DNA序列或訊息RNA形成互補時,兩者即可經由鹼基對吸引而結合,此一過程稱為雜交反應,此時待測DNA就會連上標誌,借助標誌上的螢光即可加以觀察。

第一代生物晶片

DNA微陣列晶片即一般所稱的生物晶片(biochip),自一九九○年代初期完成商品化,並由艾菲量測(Affymetrix)公司推出以來,對生化分析造成了革命性的影響。DNA微陣列晶片是利用微機電技術,將不同序列且已預為標記的核草酸片段,分別植入晶片中數以萬計小至微米見方的格子內,再與待檢測的核草酸片段進行雜交配對。利用各鹼基對間的特定對應關係,藉由顯微鏡成像技術觀察,即可從探針上已知排序的DNA片段推測已成功接合的待測核草酸片段的排序。

利用DNA的檢測工作,通常需經過數個操作步驟才能完成。傳統的陣列式儀器,需藉助具有機械手臂的模組操作微量滴管,並在不同的試劑或樣品容器之間來回移動,以完成檢測步驟。

靠著第一代生物晶片的幫助,許多生物如稻米、老鼠、人類的基因排序已陸續被解碼;此外,生物晶片的開發也朝著快速、單一化操作、大分子量分析以及高科技方向發展。

第二代生物晶片

為了簡化操作程序,於是開發出微流體晶片。微流體晶片的特點是將檢測程序中所需利用的種種元件,如混合反應槽、加熱反應槽、分離管道,與偵測容槽等,都集中在同一晶片上製作,再藉由外加電壓所產生的電滲流,或利用微小化幫浦或離心力等方式,驅動樣品或試劑在各元件間相連的微管道中移動,以完成檢測。這種一體成型的多功能晶片,也稱之為「實驗室平台晶片」(lab-on-a-chip)。

此外,由於人類基因圖譜的定序工作已告完成,下一階段的生化分析技術發展重點,將轉向「蛋白質體」的鑑定工作。蛋白體是細胞受到外在環境的改變,而表達出的數千種特定的蛋白質產物。這些產物的種類與細胞原有的DNA序列,有著密不可分的關係。因此微陣列式的蛋白質晶片,也成為下一個晶片技術研發的重點。

以下介紹兩種已經完成商品化的新型生物晶片,即安捷倫(Agilent)公司的微流體晶片,與吉歐米克斯(Zyomyx)公司的微陣列蛋白質晶片的工作原理與基本應用。

結合奈米科技的生物晶片

繼DNA微陣列晶片技術對生化分析產生的深遠影響後,各種新一代晶片裝置的研發工作,有著日新月異的進展。微流體電泳晶片與蛋白質微陣列晶片是最具代表性的兩項新技術。微流體電泳晶片雖有較成熟的進展,應用上仍多以DNA定序相關技術為主。蛋白質微陣列晶片的實用性,亦有待進一步突破。近年來有越來越多科學家將奈米科技應用在其他新型生物晶片的開發上。可預期在不久的將來,其進展必將突飛猛進而有更多新型生物晶片問世。

資料來源:《科學發展》2003年09月,369期,74~77頁